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Abstract 

The structure and magnetic properties of Sm2Fe17_xGaxC2.5 (x=2, 3, 4 and 5) compounds prepared by arc-melting were studied. X-ray 
diffraction shows that these samples are single phase with rhombohedral Th2Zn~7-type structure. The unit-cell volumes v of Sm2Fel7 -xGaxC2.5 
compounds increase monotonically with increasing Ga concentration from 832.7 A 3 for x = 2 to 847.4/13 for x = 5. The Curie temperature Tc 
and room temperature saturation magnetization Ms are found to decrease monotonically with increasing Ga concentration. The 
Sm2Fe~7_ xGaxC2.5 compounds exhibit an easy c-axis anisotropy at room temperature. The anisotropy field is 135 kOe for x = 2, and decreases 
to 76 kOe at x= 4. A room temperature coercivity exceeding 13 kOe is obtained in as-quenched Sm2Fel7_xGaxC2. 5 ribbons with x= 2 and 
X~3.  
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1. Introduction 2. Experimental 

Since the discovery of the Sm2Fe~TNy hard magnetic mate- 
rials [ 1], a number of investigations on the structure and 
magnetic properties of interstitial rare-earth iron intermetallic 
compounds with the 2:17-type structure have been reported. 
Introducing interstitial atoms into R2Fe~7 compounds by gas- 
solid reactions [ 1-5 ] leads to a considerable enhancement of 
the Curie temperature and a modification of the magneto- 
crystalline anisotropy of Sm2Fe17 from easy plane to easy c- 
axis. Unfortunately these nitrides and carbides prepared by 
gas-solid reaction have poor high temperature stability. 
Recently, Shen et al. have shown that the high-carbon rare- 
earth iron compounds with 2:17-type structure can be formed 
not only by melt-spinning [6], but also by the substitution of 
Ga, AI or Si for Fe [7,8]. The structure and magnetic prop- 
erties of some arc-melted compounds of R2(Fe,M)17Cy 
with M = Ga, A1 or Si have been studied. It was found 
that the Sm2FelaGa3Cy compounds with y >/1.5 have Curie 
temperatures higher than 600 K and room temperature 
anisotropy fields higher than 90 kOe [ 7 ]. A high coercivity 
of 15 kOe at room temperature was obtained in the 
Smz(Fe,Ga)17Cy compounds by melt-spinning [7]. In 
this paper we report the effects of the substitution of 
Ga for Fe on the structure and magnetic properties in 
Sm2Fel7C2.5. 
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The Sm2Fel7_xGaxC2. 5 samples withx = 2, 3, 4 and 5 were 
prepared by arc-melting in an argon atmosphere of high 
purity. The raw materials Sm, Fe, Ga and an Fe-C alloy were 
at least 99.9% pure. The ingots were melted at least four times 
to ensure homogeneity. An excess of 4.5% Sm was added to 
compensate for the evaporation loss of Sm during melting. 
The heat treatment of the arc-melted ingots was performed 
in a steel tube in a highly purified argon atmosphere at 1273- 
1450 K for 12-96 h. In order to obtain a high coercivity, the 
ingots were melt spun in argon atmosphere on the outside of 
a single copper wheel rotating with surface velocities between 
10 and 47 m s-  1. The as-quenched ribbons were about 1 mm 
wide and 20-30/zm thick. X-ray diffraction measurements 
on powder samples and alloy ribbons were performed using 
Co Ka radiation to identify the phase component and to 
determine the crystallographic structure. The room temper- 
ature saturation magnetization and coercivity were measured 
by an extracting sample magnetometer in fields up to 65 kOe. 
The Curie temperatures were determined from the tempera- 
ture dependence of magnetization measured by a vibrating 
sample magnetometer in a magnetic field of 1 kOe. The 
aligned samples for anisotropy field measurements were pre- 
pared by mixing the powder with epoxy resin and then align- 
ing in a magnetic field of 10 kOe. The anisotropy field was 
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determined from magnetization curves measured along and 
perpendicular to the alignment direction by using the extract- 
ing sample magnetometer with a magnetic field of up to 65 
kOe at room temperature. 

3. Results and discussion 

X-ray diffraction studies have shown that 
S m 2 F e 1 7 - x G a x C z 5  samples with x < 2 exhibit a multiphase 
structure with predominant ce-Fe phase. For x = 2, the arc- 
melted sample consists of the 2:17 phase and the c~-Fe phase. 
However, high temperature annealing leads to formation of 
the 2:17-type single phase. When the Ga concentration x is 
larger than 3, the arc-melted SmzFe~7_xGaxCz5 alloys are 
single phase with rhombohedral Th2Znl7-type structure. Fig. 
1 shows X-ray diffraction patterns ofSm2Fe~v ~Ga~Cz5 with 
x = 2 and x = 4. As has been shown in other Ga-substituted 
rare-earth iron compounds [7,8], the partial substitution of 
Ga in Sm2FelTCz5 helps the formation of the 2:17 phase. 
Table 1 summarizes the lattice constants a and c, and the 
unit-cell volumes v of Sm2Fe~7_xGa~Cz5 compounds with 
2 <x  < 5. The substitution of Ga in Sm2Fe~vCz5 leads to an 
increase in the unit-cell volume. An approximately linear 
dependence of the unit-cell volume on Ga concentration is 
observed, as shown in Fig. 2. The increase in cell volume per 
Ga atom is found to be about 4.9 ~3. 

The saturation magnetization Ms and Curie temperature Tc 
of Sm2Fe~7_~GaxCz5 compounds are also shown in Fig. 2. 
The room temperature saturation magnetization is 97.8 emu 
g -  J for x = 2 and it decreases monotonically with increasing 
Ga content to 52.1 emu g ~ at x=5 .  The Tc of 
S m z F e l v _ x G a ~ C 2  with x = 2 is found to be 637 K, which is 
about 240 k higher than that of Sm2Fe n and about 80 K 
higher than that of SmzFe~7C [ 9]. However, further substi- 
tution of Ga decreases Tc. In general, in the Fe-rich rare-earth 
iron compounds the Curie temperature is mainly determined 
by the Fe-Fe exchange interactions, which are strongly 
dependent on interatomic distance. It has been shown previ- 
ously that the introduction of interstitial carbon atoms or the 
partial substitution of Ga in Sm2Fe~7 led to a strong increase 
in the Curie temperature [4-10].  The enhancement of Tc is 
due mainly to lattice expansion. However, a decrease in the 
Curie temperature with increasing x in Sm2Fe~7 ~GaxCz5 is 
observed, although the substitution of Ga results in a mono- 
tonic increase in the unit-cell volume. This indicates that 
substitution of the larger Ga for Fe in rare-earth iron com- 
pounds with high carbon concentration decreases the overall 
Fe-Fe exchange interactions because the effect of a further 
increase in the Fe-Fe distance is overcompensated by a 
decrease in the number of Fe-Fe atom pairs, leading to a 
decrease in Tc. 

The Sm2Fel7_~GaxCz5 samples with x~<5 are found to 
have a strong easy c-axis anisotropy at room temperature. 
This can be clearly seen from the X-ray diffraction patterns 
of magnetically aligned powder samples, as shown in Fig. 1 
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Fig. 1. X-ray diffraction patterns of SmzFe17 .~GaxC2.5 compounds with x = 2 
and x = 4 ;  (a) and (c) non-aligned samples, (b) and (d) aligned samples. 

Table 1 
Lattice parameters and unit-cell volumes of SmzFel7_,GaxC2.5 compounds 

Compound a (~ )  c (/k) v (~k 3) 

SmzFelsGa2Cz5 8.739 12.591 832.7 
Sm2Fel4Ga3C2.5 8.752 12.624 837.4 
Sm2Fel 3Ga4C2.5 8.761 12.653 841.1 
Sm2Fel2Ga~C25 8.790 12.664 847.4 
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Fig. 2. Unit-cell volume v, Curie temperature Tc, saturation magnetization 
Ms and magnetocrystalline anisotropy field HA at room temperature for 
Sm2FelT_xGaxC2.5 compounds as functions of Ga concentration. 

for Sm2Fel7  _xGaxC2.5 with x---2 and x = 4. The strong uni- 
axial magnetocrystalline anisotropy of the Sm-sublattice in 
Sm2Fel7_ xGaxC2.5 results not only from the addition of inter- 
stitial carbon atoms but also from the substitution of Ga. It 
was found previously that the substitution of Ga for Fe in 
Sm2Fe17 leads to a change in the direction of easy magneti- 
zation from the basal plane to the c-axis at room temperature 
[ 10]. The addition of carbon atoms causes a more negative 
crystal field parameter A2o [ 11 ], accordingly increasing the 
anisotropy of the Sm-sublattice. Fig. 3 shows the magneti- 
zation curves of Sm2FelT_xGaxC2.5 (x = 2 and x = 4) com- 
pounds measured along and perpendicular to the aligned 
directions at room temperature. The magnetocrystalline ani- 
sotropy field HA estimated from magnetization curves is also 
shown in Fig. 2. The room temperature anisotropy field 
decreases with increasing Ga concentration. The HA of the 
sample with x = 2  is 135 kOe, which is 55 kOe higher than 
that of Nd2Fel4B. 

The magnetic hardening of SmEFel7 _xGaxC2. 5 was inves- 
tigated by melt-spinning. As an example, Fig. 4 shows a room 
temperature hysteresis loop of as-quenched Sm2FelaGa3C2.5 
ribbons. Room temperature coercivities exceeding 13 kOe 
are obtained in Sm2Fel7_xGaxC2.5 (x = 2 and x = 3) ribbons 
prepared at quenching rates of 15-30 m s -  1. Quenching rates 
higher than 30 m s -  1 lead to a rapid decrease in Hc. X-ray 
diffraction analysis shows that all diffraction lines in the 
pattern of the Sm2Fe17_xGaxC2.5 ribbons prepared at veloci- 
ties lower than 30 m s-1 can be indexed according to the 
Th2Znl7  structure, indicating that these samples consist 
almost entirely of the hard magnetic phase. In an earlier study 
it was shown that a comparatively high coercivity (Hc = 4.6 
kOe) in Sm2Fe~TCy could be attained only for high carbon 
concentrations [ 12]. However, the relatively high carbon 
concentration leads to formation of the a-Fe phase, which 
prevents the attainment of a high coercivity. Our studies indi- 
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Fig. 3. Magnetization curves of the orientated Sm2FelT_xGaxC2.5 (x = 2 and 
x ~ 4 )  samples measured along and perpendicular to the aligned directions 
at room temperature. 
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Fig. 4. Room temperature hysteresis loop of as-quenched Sm2Fe~4Ga3Cz.5 
ribbons prepared at a speed of 20 m s -  J. 
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cate that the substitution of Ga in Sm2Fe17Cy with high carbon 
concentration helps the formation of the 2:17-type structure 
and reduces the formation of the soft magnetic a-Fe phase. 
This, in consequence, results in a higher coercivity. 

Acknowledgements  

This work was supported by the National Natural Science 
Foundation of China. 

References 

[ 1 ] J.M.D. Coey and H. Sun, J. Magn. Magn. Mater., 87 (1990) L25 I. 
[2] H. Sun, J.M.D. Coey, Y. Otani and D.P.F. Hurley, J. Phys. Condens. 

Matter, 2 (1990) 6465. 

[3] K.H.J. Buschow, R. Coehoorn, D.B. de Mooij, K. de Waard and T.H. 
Jacobs, J. Magn. Magn. Mater., 92 (1990) L35. 

[4] L.X. Liao, X. Chen, Z. Altounian and D.H. Ryan, Appl. Phys. Lett., 60 
(1992) 129. 

[5] C. Kuhrt, M. Katter, J. Wecker, K. Schnitzke and L. Schultz, Appl. 
Phys. Lett., 60 (1992) 2029. 

[6] L. Cao, L.S. Kong and B.G. Shen, J. Phys. Condens. Matter, 4 (1992) 
L515. 

[7] B.G. Shen, L.S. Kong, F.W. Fang and L. Cao, Appl. Phys. Lett., 63 
(1993) 2288. 

[8] B.G. Shen, L.S. Kong, F.W. Wang, L. Cao and W.S. Zhan, J. Appl. 
Phys., 75 (1994) 6253. 

[9] X.P. Zhong, R.J. Radwanski, F.R. de Boer, T.H. Jacobs and K.H.J. 
Buschow, J. Magn. Magn. Mater., 86 (1990) 333. 

[10] B.G. Shen, F.W. Wang, L.S. Kong and L. Cao, J. Phys. Condens. 
Mater., 5 (1993) L685. 

I l l ]  T.H. Jacobs, M.W. Dirken, R.C. Thiel, L.J. de Jongh and K.H.J. 
Buschow, J. Magn. Magn. Mater, 83 (1990) 293. 

[ 12] J. Ding and M. Rosenberg, J. Less-Common Met., 166 (1990) 313. 


